5 research outputs found

    ECGadv: Generating Adversarial Electrocardiogram to Misguide Arrhythmia Classification System

    Full text link
    Deep neural networks (DNNs)-powered Electrocardiogram (ECG) diagnosis systems recently achieve promising progress to take over tedious examinations by cardiologists. However, their vulnerability to adversarial attacks still lack comprehensive investigation. The existing attacks in image domain could not be directly applicable due to the distinct properties of ECGs in visualization and dynamic properties. Thus, this paper takes a step to thoroughly explore adversarial attacks on the DNN-powered ECG diagnosis system. We analyze the properties of ECGs to design effective attacks schemes under two attacks models respectively. Our results demonstrate the blind spots of DNN-powered diagnosis systems under adversarial attacks, which calls attention to adequate countermeasures.Comment: Accepted by AAAI 202

    Designing Incentive Mechanisms for Mobile Crowdsensing with Intermediaries

    No full text
    In the past decade, with the rapid development of wireless communication and sensor technology, ubiquitous smartphones equipped with increasingly rich sensors have more powerful computing and sensing abilities. Thus, mobile crowdsensing has received extensive attentions from both industry and academia. Recently, plenty of mobile crowdsensing applications come forth, such as indoor positioning, environment monitoring, and transportation. However, most existing mobile crowdsensing systems lack vast user bases and thus urgently need appropriate incentive mechanisms to attract mobile users to guarantee the service quality. In this paper, we propose to incorporate sensing platform and social network applications, which already have large user bases to build a three-layer network model. Thus, we can publicize the sensing platform promptly in large scale and provide long-term guarantee of data sources. Based on a three-layer network model, we design incentive mechanisms for both intermediaries and the crowdsensing platform and provide a solution to cope with the problem of user overlapping among intermediaries. We theoretically prove the properties of our proposed incentive mechanisms, including incentive compatibility, individual rationality, and efficiency. Furthermore, we evaluate our incentive mechanisms by extensive simulations. Evaluation results validate the effectiveness and efficiency of our proposed mechanisms

    ZkRep: a privacy-preserving scheme for reputation-based blockchain system

    No full text
    Reputation/trust-based blockchain systems have attracted considerable research interests for better integrating Internet of Things with blockchain in terms of throughput, scalability, energy efficiency, and incentive aspects. However, most existing works only consider static adversaries. Hence, they are vulnerable to slowly adaptive attackers, who can target validators with high reputation value to severely degrade the system performance. Therefore, we introduce zkRep, a privacy-preserving scheme tailored for reputation-based blockchains. Our basic idea is to hide both the identity and reputation of the validators by periodically changing the identity and reputation commitments (i.e., aliases), which makes it much more difficult for slowly adaptive attackers to identify validators with high reputation value. To realize this idea, we utilize privacy-preserving Pedersen-commitment-based reputation updating and leader election schemes that operate on concealed reputations within an epoch. We also introduce a privacy-preserving identity update protocol that changes the identity and time-window-based cumulative reputation commitments during each epoch transition. We have implemented and evaluated zkRep on the Amazon Web Service. The experimental results and analysis show that zkRep achieves great privacy-preserving features against slowly adaptive attacks with little overhead.Info-communications Media Development Authority (IMDA)National Research Foundation (NRF)Submitted/Accepted versionThis work was supported in part by RGC under Contract CERG 16204418, Contract 16203719, Contract 16204820, and Contract R8015; in part by the Guangdong Natural Science Foundation under Grant 2017A030312008; and in part by the National Research Foundation, Singapore, under its Strategic Capability Research Centres Funding Initiativ
    corecore